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Problem Set 7

Sample Solution

Exercise 1: Randomized Independent Set Algorithm (10+10 points)

Let G “ pV,Eq be a graph with n vertices and m edges. An independent set in a graph G is a subset
S Ď V of the nodes such that no two nodes in S are connected by an edge. Let d :“ 1

n

ř

vPV degpvq “ 2m
n

be the average node degree and consider the following randomized algorithm to compute an indepen-
dent set S.

(I) Start with an empty set S. Then independently add each node of V with probability 1{d to S
(you can assume that d ě 1).

(II) The subgraph induced by S might still contain some edges and we therefore need to remove at
least one of the nodes of each of the remaining edges. For this, we use the following deterministic
strategy: As long as S is not an independent set, pick an arbitrary node u P S which has a
neighbor in S and remove u from S.

It is clear that the above algorithm computes an independent set S of G.

a) (10 points) Find a (best possible) lower bound on the expected size of S at the end of the algorithm.
Your lower bound should be expressed as a function of n and d.

Hint: First compute the expected numbers of nodes in S and edges in GrSs after Step (I) of the
algorithm.

b) (10 points) Assume that the above algorithm has running time T pnq and that it computes an
independent set of size n

5d with probability at least 1
2 .

Show how to compute an independent set of size at least n
5d with probability 1 ´ 1

n . What is the
running time of your algorithm?

Solution:

Let G “ pV,Eq be the given graph and let n “ |V | denote the number of nodes, m “ |E| the number
of edges and d “ 2m

n the average degree.

a) We first compute the expected number of nodes in S after the first step. Let X be the random
variable which indicates the size of S. By linearity of expectation we obtain

ErXs “
ÿ

vPV

1

d
“

n

d
.
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Let Y be the random variable which denotes the number of edges in GrSs after the first step. Each
edge e P E exists in GrSs if and only if both of its adjacent nodes joined S in the first step, which
happens with probability 1{d2. Thus we obtain

ErY s “
ÿ

ePE

1

d2
“

m

d2
.

Now, we use that m “ dn{2 and obtain ErY s “ dn{2d2 “ n{2d.

In step (II) all edges are removed. Therefore, the size of the independent set after step (II) is at
least X ´ Y because we remove at most one node for each edge in GrSs. Combining both results
and using linearity of expectation we obtain that the expected number of nodes after step (II) is
at least

ErX ´ Y s “ ErXs ´ ErY s “
n

2d
.

b) Let A denote the above algorithm which finds an independent set of size at least n{5d with prob-
ability 1{2. We amplify the probability by executing algorithm A, k times (with independent
probabilities), where we determine the proper value of k later. We return the largest independent
set of all k invocations of the algorithm.

If we have k invocations, the probability that we do not return an independent set of size at
least n{5d after the k invocations is the same as the probability that none of the independent
invocations returns an independent set of size at least n{5d. This probability can be bounded by

p1´
1

2
qk “

1

2k
.

To solve the question we need that this probability is at most 1{n. Thus, setting k “ rlog2pnqs is
sufficient. Then the runtime of the algorithm will be k ¨ T pnq “ rlog2pnqs ¨ T pnq.
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Exercise 2: Randomized partial 3-coloring (10 points)

The maximum 3-coloring problem asks for assigning one of the colors t1, 2, 3u to each node v P V of
a graph G “ pV,Eq such that the number of edges tu, vu P E for which u and v get different colors
is maximized. A simple randomized algorithm for the problem would be to (independently) assign a
uniform random color to each node.

What is the expected approximation ratio of this algorithm?

Solution:

Let G “ pV,Eq be the given graph with n “ |V | and m “ |E|. Let X denote the random variable
which indicates the number of edges where both endpoints have different colors. For a single edge
e P E the probability that both endpoints have different colors is 2{3. Thus we obtain

ErXs “
ÿ

ePE

2

3
“

2

3
¨m.

Because any optimal algorithm can at most color the endpoints of all edges p“ mq differently, we can
ensure an expected approximation ratio of 2{3.

Note: In the literature, the approximation ratio is often defined via Opt. Solution
Alg. Solution instead of Alg. Solution

Opt. Solution .
With this definition we could ensure an approximation ratio of 3{2.

Remark: One can also show that this approximation factor is tight: In a ring an optimal 3-coloring
really colors the endpoints of all m edges differently and our algorithm (in expectation) only colors the
endpoints of 2{3 of the edges differently.

Exercise 3: Random Max Cut Computation (10 points)

In the lecture, we discussed the random contraction algorithm to obtain a minimum edge cut. One
could try to use the same algorithm to also find a maximum edge cut (partition A Ă V,B “ V zA of
the nodes so that the number of edges connecting nodes in A and B is maximized).

Show that for some graphs, the probability that the contraction algorithm returns a maximum cut is
0.

Solution:

Let G “ pLYR,Eq be the complete bipartite graph with n{2 nodes on either side.

The maximum cut of this graph is S “ pL,Rq and has size pn{2q2.

But as soon as the contraction algorithm contracts a single edge in this graph, it destroys at least one
edge. Hence, it will always return a cut which is smaller than S, thus the probability that it returns
the maximum cut in this graph is zero.

Remark: It is not crucial that we have the complete bipartite graph. Actually most bipartite graphs
work as a counter example.
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